已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆Ck:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak.(1)求椭圆G的方程;(2)求△AkF1F2的面积;(3)问是否存在圆Ck包围椭圆G?请说明理由
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.(1)求椭圆的方程:(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
已知函数(1)若函数的最小值是,且,求的值:(2)若,且在区间恒成立,试求取范围;
(Ⅰ)如果三段的长度均为整数,求能构成三角形的概率;(Ⅱ)如果把铁丝截成2,2,3的三段放入一个盒子中,然后有放回地摸4次,设摸到长度为2的次数为,求与;(Ⅲ)如果截成任意长度的三段,求能构成三角形的概率.
如图,已知正三棱柱的底面边长是,、E是、BC的中点,AE=DE(1)求此正三棱柱的侧棱长;(2)正三棱柱表面积;
已知函数,(1)求函数的最小正周期;(2)若,求的值.