已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足=,·=0.(1)当点A在x轴上移动时,求动点P的轨迹C的方程;(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2,求直线l的方程.
已知椭圆C:的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点M (0,1),与椭圆C交于不同的两点A ,B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求的取值范围.
已知函数. (1)求函数的极值; (2)当时,求的最值.
已知抛物线的焦点为,抛物线上的点到准线的距离为. (1)求抛物线的标准方程; (2)设直线与抛物线的另一交点为,求的值.
已知圆过点,且圆心在直线上. (1)求圆的方程; (2)若直线与圆交于两点,当最小时,求直线的方程及的最小值.
已知,,其中. (1)若,且为真,求的取值范围; (2)若是的充分不必要条件,求实数的取值范围.