在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合如右图所示.将矩形折叠,使A点落在线段DC上.若折痕所在直线的斜率为k,试写出折痕所在直线的方程.
(本小题满分12分)(1)判断函数的奇偶性;(2)若,求a的取值范围.
(14分)某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-(0≤t≤5),其中t为产品售出的数量(单位:百件).(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);(2)当年产量为多少件时,公司可获得最大年利润?
(12分)(2010·无锡模拟)已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
(13分)已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
(12分)若集合A={x|x2-2x-8<0},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求;(2)若A∩B=∅,求实数m的取值范围;(3)若A∩B=A,求实数m的取值范围.