(本小题满分12分)设是函数的一个极值点.(1)求与的关系式(用表示),并求的单调区间;(2)设,若存在,使得 成立,求的取值范围.
已知点M到点的距离比到点M到直线的距离小4;(Ⅰ)求点M的轨迹的方程;(Ⅱ)若曲线C上存在两点A,B关于直线l:对称,求直线AB的方程
已知展开式中各项的二项式系数和比各项的系数和大256;(Ⅰ)求展开式中的所有无理项的系数和;(Ⅱ)求展开式中系数最大的项.
已知恒成立,方程表示焦点在轴上的椭圆,若命题“且”为假,求实数的取值范围.
(本小题满分10分)选修4—5:不等式选讲已知实数满足,且.(Ⅰ)证明:;(Ⅱ)证明:.
(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长; (2)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为 ,求点到线段中点的距离.