下图为丹桂华庭内的两幢楼,它们的高AB=CD=30m,现需了解甲楼对乙楼的采光的影响情况。当太阳光与水平线的夹角为30°时。试求:1)若两楼间的距离AC=24m时,甲楼的影子,落在乙楼上有多高?2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?
(资阳)已知直线()过点F(0,1),与抛物线相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m,n)(m<0),过点E(0,﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
(自贡)观察下表 我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题: (1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 ; (2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16, ①求x,y的值; ②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
(内江)(1)填空:= ; = ; = . (2)猜想:= (其中n为正整数,且). (3)利用(2)猜想的结论计算:.
(达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上一点,且 连接DF,并延长DF交BA的延长线于点E. (1)判断DB与DA的数量关系,并说明理由; (2)求证:△BCD≌△AFD; (3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.
(南充)已知关于x的一元二次方程,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)