在棱长为1的正方体ABCD—A1B1C1D1中,E,F,G分别为棱BB1,DD1和CC1的中点.(Ⅰ)求证:C1F//平面DEG;(Ⅱ)求三棱锥D1—A1AE的体积;(Ⅲ)试在棱CD上求一点M,使平面DEG.
解方程:
已知椭圆的右焦点为,点在椭圆上.(1)求椭圆的方程;(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,求证:△的周长是定值.
已知圆,直线.(1)求证:对任意,直线与圆恒有两个交点;(2)求直线被圆截得的线段的最短长度,及此时直线的方程.
如图,三棱柱中,侧棱垂直底面,是棱的中点.(1)证明:平面⊥平面;(2)平面分此棱柱为两部分,求这两部分体积的比.
已知,设命题函数是上的单调递减函数;命题:函数的定义域为.若“”是真命题,“”是假命题,求实数的取值范围.