已知函数(I)若为的极值点,求实数的值;(II)若在上为增函数,求实数的取值范围;(Ⅲ)当时,方程有实根,求实数的最大值。
(Ⅰ)计算(Ⅱ)已知复数满足: 求的值.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正弦值为,求二面角的余弦值.
某房屋开发公司用100万元购得一块土地,该地可以建造每层1000m2的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用增加20元。已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层?
已知曲线. (1)求曲线在处的切线方程;(2)求曲线过点的切线方程.
已知命题,命题,若是的必要不充分条件,求实数m的取值范围.