已知定义在R上的函数和数列,当时,,其中均为非零常数.(Ⅰ)若数列是等差数列,求的值;(Ⅱ)令,求数列的通项公式;(Ⅲ)若数列为等比数列,求函数的解析式
如图1,在直角梯形中,,,且. 现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2. (1)求证:∥平面; (2)求证:平面; (3)求点到平面的距离. 图图
已知数列{}满足,且 (1)求证:数列{}是等差数列; (2)求数列{}的通项公式; (3)设数列{}的前项之和,求证:.
第届亚运会于年月日至日在中国广州进行,为了做好接待工作,组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱. (1)根据以上数据完成以下列联表:
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关? (3)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少? 附:K2=
已知、、为的三个内角,且其对边分别为、、,若. (1)求; (2)若,求的面积.
设函数有两个极值点,且. (1)求实数的取值范围; (2)讨论函数的单调性; (3)若对任意的,都有成立,求实数的取值范围.