(本小题满分10分)选修4-4:坐标系与参数方程如图,已知点,,圆是以为直径的圆,直线:(为参数).(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;(Ⅱ)过原点作直线的垂线,垂足为,若动点满足,当变化时,求点轨迹的参数方程,并指出它是什么曲线.
在数列{an}中,a1=2,a4=8,且满足an+2=2an+1-an(n∈N*) (1)求数列{an}的通项公式 (2)设bn=2n-1·an,求数列{bn}的前n项和sn
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元) (1)将y表示为x的函数 (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
解关于x的不等式ax2-(a+1)x+1<0.
数列{an}的前n项和记为Sn, (1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
(1)求数列的通项公式 (2)求数列的前n项和