(本小题满分12分)已知点Pn(an,bn)都在直线:y=2x+2上,P1为直线与x轴的交点,数列成等差数列,公差为1.(n∈N+)(1)求数列,的通项公式;(2)若f(n)= 问是否存在k,使得f(k+5)=2f(k)-2成立;若存在,求出k的值,若不存在,说明理由。(3)求证: (n≥2,n∈N+)
如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于,两点. (1)如果、两点的纵坐标分别为、,求和; (2)在(1)的条件下,求的值; (3)已知点,求函数f()=的值域.
在△ABC中,角A、B、C所对的边分别为a,b,c,且满足csinA=acosC. (1)求角C的大小; (2)求sinA+cosA的最大值,并求取得最大值时角A,B的大小.
如图:在三棱锥中,已知点、、分别为棱、、的中点. (1)求证:∥平面; (2)若,,求证:平面⊥平面.
已知是第三象限角,且。 (1)化简; (2)若=,求的值。
已知等差数列的首项为a,公差为b,等比数列的首项为b,公比为a,其中a,b均为正整数,若。 (1)求、的通项公式; (2)若成等比数列,求数列的通项公式。 (3)设的前n项和为,求当最大时,n的值。