、已知,求下列各式的值:(1); (2).
设函数其中向量,.(1)求的最小值,并求使取得最小值的的集合;(2)将函数的图象沿轴向右平移,则至少平移多少个单位长度,才能使得到的函数的图象关于轴对称?
已知数列满足,,()(1)若,数列单调递增,求实数的取值范围;(2)若,试写出对任意成立的充要条件,并证明你的结论.
已知椭圆的方程为,其中.(1)求椭圆形状最圆时的方程;(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.
如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于半圆所在的平面,且.(1)求证:;(2)若异面直线和所成的角为,求平面与平面所成的锐二面角的余弦值.
已知函数,().(1)若有最值,求实数的取值范围;(2)当时,若存在、,使得曲线在与处的切线互相平行,求证:.