(本题满分15分,请列式并用数字表示结果,直接写结果不得分)从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
函数的图象如下图所示.(1)求解析式中的值; (2)该图像可由的图像先向_____(填“左”或“右”)平移_______个单位,再横向拉伸到原来的_______倍.纵向拉伸到原来的______倍得到.
已知, .(1)判断的奇偶性并加以证明;(2)判断的单调性并用定义加以证明;(3)当的定义域为时,解关于m的不等式.
探究函数的图像时,.列表如下:
观察表中y值随x值的变化情况,完成以下的问题:⑴函数的递减区间是 ,递增区间是 ;⑵若对任意的恒成立,试求实数m的取值范围.
已知实数,曲线与直线的交点为(异于原点),在曲线上取一点,过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,接着过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,如此下去,可以得到点,,…,,… . 设点的坐标为,.(Ⅰ)试用表示,并证明; (Ⅱ)试证明,且();(Ⅲ)当时,求证: ().
如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为.(Ⅰ)求线段中点的轨迹的方程;(Ⅱ)是曲线上的动点, 到轴的距离之和为,设为到轴的距离之积.问:是否存在最大的常数,使恒成立?若存在,求出这个的值;若不存在,请说明理由.