(1)在等差数列中,d=2,n=15,求及(2)已知,都是正数,并且,求证:
已知函数(为常数).(1)当时,求的单调递减区间;(2)若,且对任意的,恒成立,求实数的取值范围.
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.
如图,四棱锥的底面为平行四边形,平面,为中点.(1)求证:平面;(2)若,求证:平面.
在锐角中,、、所对的边分别为、、.已知向量,,且.(1)求角的大小;(2)若,,求的面积.
将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.(1)求时的概率;(2)求的概率分布及数学期望.