在某次竞赛活动中(竞赛以笔试形式进行),文科班有2名同学参加数学竞赛,另有2名同学参加英语竞赛;理科班有2名同学参加数学竞赛,另有3名同学参加英语竞赛。后由于某种原因,参加数学和英语竞赛的同学各有一名同学交换考试。(1)求参加数学竞赛恰有2名文科同学的概率。(2)求参加数学竞赛的文科同学数的分布列。
(本小题共12分) 在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量与向量共线,且点An(n,an) (n∈N*)都在斜率为2的同一条直线l上. 若a1=-3,b1=10 (1)求数列{an}与{ bn }的通项公式; (2)求当n取何值时△AnBnCn的面积Sn最小,并求出Sn的这个最小值。
(本小题满分12分) 已知函数,且 (1)求的最大值及最小值;(2)求的在定义域上的单调区间.
(本小题满分12分)椭圆C:的两个焦点为,点P在椭圆C上,且,.(1)求椭圆C的方程;(2)若直线过圆的圆心M,交椭圆C于A、B两点,且A、B两点关于点M对称,求直线的方程。
(本小题满分14分)已知动圆过定点F(2,0),且与直线相切。(1)求动圆圆心的轨迹C的方程;(2)若经过定点F的动直线与轨迹C交于A、B两点,且这两点的横坐标分别为.①求证:为定值;②试用表示线段AB的长度;③求线段AB长度的最小值。
(本小题满分12分)在等差数列中,,数列满足,且(1)求数列的通项公式;(2)求数列的前项的和.