某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
矩形OABC在平 面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-x与BC边相交于D点.(1)若抛物线y=ax-x经过点A,试确定此抛物线的解析式;(2)在(1)中的抛物线的对称轴上取一点E,求出EA+ED的最小值;(3)设(1)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.
如图,已知以Rt△ABC的直角边AB为直径做圆O,与斜边AC交于点D,E为BC边的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE、AE,当∠CAB为何值时,四边形AODE是平行四边形,并说明理由;(3)在(2)的条件下,求sin∠CAE的值.
为加强对学生的爱国主义教育,某学校团组织决定在“五·四”青年节到来之际,计划租用6辆客车送一批团员师生去烈士塔参加新团员入团宣誓仪式.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车的总费用为y元.
(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?
如图,反比例函数y=(k>0)与矩形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S、S .(1)①点B的坐标为 ;②S S(填“>”、“<”、“=”);(2)当点D为线段AB的中点时,求k的值及点E的坐标;(3)当S+S=2时,试判断△ODE的形状,并求△ODE的面积.
如图,△ABC是边长为5的等边三角形,将△ABC绕点C顺时针旋转120°,得到△EDC,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.