在平面直角坐标系中,点A的坐标是(0,6),点B在一次函数y=-x+m的图象上,且AB=OB=5.求一次函数的解析式.
等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
已知,在△ABC中,∠ACB=2∠B.(1)如图,当AD为∠BAC的角平分线时,求证:AB=AC+CD(2)如图,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想加以证明.
如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点 重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:BE="AD" (2)求的度数;(3)若PQ=3,PE=1,求AD的长.
如图,△ABC中,点D在边BC上,连接AD并延长,使DE=AD,连接BE.(1)若要使BE=AC,应添上条件: ; (2)证明上题;(3)在△ABC中,若AB=5,AC=3,BC边上的中线AD长为x,则x的取值范围是 。