( (本小题满分12分)抛物线上有两个定点A、B分别在对称轴的上、下两侧,F为抛物线的焦点,并且|FA|=2,|FB|=5,(1)求直线AB的方程.(2)在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.
(本小题满分9分)已知是复数,若为实数(为虚数单位),且为纯虚数.(1)求复数;(2)若复数在复平面上对应的点在第四象限,求实数的取值范围
(本小题满分13分)已知函数..(Ⅰ)若,求函数的最大值;(Ⅱ)令,求函数的单调区间;(Ⅲ)若,正实数满足,证明.
(本小题满分13分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。(2)用最小二乘法计算利润额y对销售额x的回归直线方程.(3)当销售额为4(千万元)时,估计利润额的大小.
已知复数z=1﹣i(i是虚数单位) (Ⅰ)计算z2; (Ⅱ)若z2+a,求实数a,b的值.