在平面直角坐标系中,设点,以线段为直径的圆经过原点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项. (1)求数列{an},{bn}的通项公式; (2)设数列{cn}对n∈N*,均有++…+=an+1成立,求c1+c2+c3+…+c2014的值.
已知等差数列{an}中,a5=12,a20=-18. (1)求数列{an}的通项公式; (2)求数列{|an|}的前n项和Sn.
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=+n-4. (1)求证{an}为等差数列; (2)求{an}的通项公式.
设数列{an}的前n项和Sn满足=3n-2. (1)求数列{an}的通项公式; (2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.
已知数列{an}的通项公式为an=n2-n-30. (1)求数列的前三项,60是此数列的第几项? (2)n为何值时,an=0,an>0,an<0? (3)该数列前n项和Sn是否存在最值?说明理由.