本小题满分12分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84乙 92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
已知函数,其中a>0. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值; (Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)
在数列{an}中,已知. (1)求数列{an}的通项公式; (2)求证:数列{bn}是等差数列; (3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为. (Ⅰ)求ω的值; (Ⅱ)求函数f(x)的单调增区间; (Ⅲ)若f(α)=,求sin(π﹣4α)的值.
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点. (1)求证:BC∥平面EFG; (2)DH⊥平面AEG.
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos,=3. (1)求△ABC的面积; (2)若c=1,求a、sinB的值.