(本小题满分12分)某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为,,。第二次选拔,甲、乙、丙三人合格的概率依次为,,。(1)求第一次选拔后甲、乙两人中只有甲合格的概率;(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;(3)设甲、乙、丙经过前后两次选拔后恰有两人合格的的概率;
(文科)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(理科)已知动点在直线上,过点分别作曲线的切线,切点为、, 求证:直线恒过一定点,并求出该定点的坐标?
(文科)已知直线与双曲线交于、点。(1)求的取值范围;(2)若以为直径的圆过坐标原点,求实数的值;(3)是否存在这样的实数,使、两点关于直线对称?若存在,求出值;若不存在,说明理由。
(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
(文科)如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.