已知函数满足,对于任意R都有,且,令.(1)求函数的表达式;(2)求函数的单调区间;(3)研究函数在区间上的零点个数.
已知函数的最小正周期为. (Ⅰ)求的解析式; (Ⅱ)设的三边满足,且边所对的角为,求此时函数的值域.
已知函数,它的一个极值点是. (Ⅰ) 求的值及的值域; (Ⅱ)设函数,试求函数的零点的个数.
已知椭圆的离心率为,且经过点. (Ⅰ)求椭圆的方程; (Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合), ①求的值; ②当为等腰直角三角形时,求直线的方程.
已知直角梯形中,是边长为2的等边三角形,.沿将折起,使至处,且;然后再将沿折起,使至处,且面面,和在面的同侧. (Ⅰ) 求证:平面; (Ⅱ) 求平面与平面所构成的锐二面角的余弦值.
一个口袋中装有2个白球和个红球(且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (Ⅰ) 摸球一次,若中奖概率为,求的值; (Ⅱ) 若,摸球三次,记中奖的次数为,试写出的分布列并求其期望.