如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求证AC⊥平面DEF;(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.(3)求平面ABD与平面DEF所成锐二面角的余弦值。
已知数列的首项为=3,通项与前n项和之间满足2=· (n≥2)。 (1)求证:是等差数列,并求公差; (2)求数列的通项公式。
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求: (Ⅰ)A的大小; (Ⅱ)若,求面积的最大值.
如图,在长为52宽为42的大矩形内有一个边长为18的小正方形,现向大矩形内 随机投掷一枚半径为1的圆片,求: (Ⅰ)圆片落在大矩形内部时,其圆心形成的图形面积; (Ⅱ)圆片与小正方形及内部有公共点的概率.
执行如图所示的程序框图. (Ⅰ)当输入n=5时,写出输出的a的值; (Ⅱ)当输入n=100时,写出输出的T的值.
一个容量为M的样本数据,其频率分布表如下. (Ⅰ)表中a= ,b = ; (Ⅱ)画出频率分布直方图; (Ⅲ)用频率分布直方图,求出总体的众数及平均数的估计值.频率分布表