如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求证AC⊥平面DEF;(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.(3)求平面ABD与平面DEF所成锐二面角的余弦值。
为了探究患慢性气管炎与吸烟有无关系,调查了却名岁以上的人,结果如下表所示,据此数据请问:岁以上的人患慢性气管炎与吸烟习惯有关系吗?
关于某设备的使用年限和所支出的维修费用(万元),有如 下的统计资料:
如由资料可知对呈线形相关关系,试求: (1)线形回归方程; (2)估计使用年限为年时,维修费用是多少?
已知动点与平面上两定点连线的斜率的积为定值. (1)试求动点的轨迹方程; (2)设直线与曲线交于M.N两点,当时,求直线的方程.
设函数,求函数f(x)的单调区间及其极值.
已知斜率为的直线过抛物线的焦点,且与抛物线交于两点,(1)求直线的方程(用表示); (2)若设,求证:; (3)若,求抛物线方程.