【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字,张写有数字,张写有数字;乙箱中也有张卡片,其中张写有数字,张写有数字,张写有数字.(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求的分布列及的数学期望;(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有数字的概率是多少?
已知向量,函数 (1)求函数图像的对称中心坐标; (2)将函数的图像向下平移,再向左平移个单位得到函数的图像,是写出的解析式并作出它在上的图像。
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且。 (1)求证:。 (2)若异面直线和所成的角为,求平面和平面所成的锐二面角的余弦值。
已知函数, (1)若有最值,求实数的取值范围; (2)当时,若存在,使得曲线在与处的切线互相平行,求证。
某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有两个定点投篮位置,在点投中一球得2分,在点投中一球得3分。某规则是:按先后再的顺序投篮,教师甲在和点投中的概率分别是和,且在两点投中与否相互独立。 (1)若教师甲投篮三次,试求他投篮得分的分布列和数学期望; (2)若教师乙与教师甲在投中的概率相同,两人按规则各投三次,求甲胜乙的概率。
已知函数,其中m,a均为实数. (1)求的极值; (2)设,若对任意的,恒成立,求的最小值; (3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.