函数在同一个周期内,当时取最大值1,当时,取最小值。(1)求函数的解析式(2)函数的图象经过怎样的变换可得到的图象?(3)若函数满足方程求在内的所有实数根之和.
(本题12分)在一次国际比赛中,中国女排与俄罗斯女排以“五局三胜”制进行决赛,根据以往战况,中国女排在每一局中赢的概率都是,已知比赛中,俄罗斯女排先赢了第一局,求: (1)中国女排在这种情况下取胜的概率; (2)设比赛局数为,求的分布列及(均用分数作答).
已知函数在时取到最大值. (1)求函数的定义域; (2)求实数的值.
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点. (1)求证:AB1//面BDC1; (2)求二面角C1—BD—C的余弦值; (3)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.
如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°。 (Ⅰ)证明:BD⊥AA1; (Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由。
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。 (1)求异面直线AE与A1C所成的角; (2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置; (3)在(2)的条件下,求二面角A1-AG-E的大小(文科求其正切值)。