某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,希望中学要从甲、乙两品牌电脑中各选一种型号的电脑。(1)写出所有选购方案(利用树状图或列表法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如右图所示),恰好用了10万元人民币,其中甲品牌电脑为A型电脑,求购买A型号电脑有几台?
如图,一次函数的图像与x轴、y轴分别交于A、B两点,且A、B两点的坐标分别为(4,0),(0,3)(1)求一次函数的表达式;(2)点C在线段OA上,沿BC将△OBC翻折,O点恰好落在AB上的D点处,求直线BC的表达式;(3)是否存在x轴上一个动点P,使△ABP为等腰三角形?若存在请直接写出P点坐标;若不存在,请说明理由。
(本题8分)如图:直线和直线分别交轴于点A、B,两直线交于点C(1, )。(1)求的值。 (2)求△ABC的面积。(3)请根据图象直接写出:当时,自变量的取值范围。
(本题7分)如图,分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。(1)B出发时与A相距 千米。(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时。(3)B出发后 小时与A相遇。(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇?相遇点离B的出发点 千米?在图中表示出这个相遇点C。(5)A行走的路程S与时间t的函数关系式为 。
(本题6分)在一次消防演习中,消防员架起一架25米长的云梯AB,如图斜靠在一面墙上,梯子底端B离墙角C的距离为7米。(1)求这个梯子的顶端距地面的高度AC是多少?(2)如果消防员接到命令,按要求将梯子底部在水平方向滑 动后停在DE的位置上(云梯长度不变),测得BD长为8米,那么云梯的顶部在下滑了多少米?
(本题7分)如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(-1,5),B(-1,0),C(-4,3).(1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.