(本小题满分12分)设函数(Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值.
数列满足,其中求值,猜想,并用数学归纳法加以证明。
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(1)求直线AC与PB所成角的余弦值;(2)求面AMC与面PMC所成锐二面角的大小的余弦值。
(本小题满分14分) 如图,直角梯形ABCD中,∠,AD∥BC,AB=2,AD=,BC=,椭圆F以A、B为焦点且过点D. (Ⅰ)建立适当的直角坐标系,求椭圆的方程;(Ⅱ)若点E满足,是否存在斜率两点,且,若存在,求K的取值范围;若不存在,说明理由。
(本小题满分12分) 如图正三棱柱各条棱长均为1,D是侧棱中点。(I)求证:平面(II)求平面(Ⅲ)求点
(本小题满分12分) 已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正。某射手若使用其中校正过的枪,每射击一次击中目标的概率为;若使用其中未校正的枪,每射击一次击中目标的概率为,假定每次射击是否击中目标相互之间没有影响。(I)若该射手用这2支已经试射校正过的枪各射击一次,求目标被击中的次数为偶数的概率; (II)若该射手用这3支抢各射击一次,求目标至多被击中一次的概率。