(本小题满分10分)选修4—4:坐标系与参数方程:已知圆C的参数方程为 (φ为参数);(1)把圆C的参数方程化成直角坐标系中的普通方程;(2)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,把(1)中的圆C的普通方程化成极坐标方程;设圆C和极轴正半轴的交点为A,写出过点A且垂直于极轴的直线的极坐标方程。
.已知函数(为实数,,). (1)当函数的图像过点,且方程有且只有一个根,求的表达式; (2)若当,,,且函数为偶函数时,试判断能否大于?
如图,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=AB=2,G为线段AB的中点,将△ADG沿GD折起,使平面ADG⊥平面BCDG,得到几何体 A-BCDG. (1)若E,F分别为线段AC,AD的中点,求证:EF∥平面ABG; (2)求三棱锥C-ABD的体积.
已知四棱锥P-ABCD的三视图如图所示,E是侧棱PC上 的动点. (1) 是否无论点E在何位置,都有BD⊥AE?证明你的结论; (2) 求直线PA与底面ABCD所成角的正切值.
设关于的不等式的解集为,不等式的解集为. (1)当时,求集合; (2)若,求实数的取值范围.
(本题满分12分) 已知函数f(x)=x2+ax-lnx,a∈R; (1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围; (2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.