(本小题满分10分)选修4—4:坐标系与参数方程:已知圆C的参数方程为 (φ为参数);(1)把圆C的参数方程化成直角坐标系中的普通方程;(2)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,把(1)中的圆C的普通方程化成极坐标方程;设圆C和极轴正半轴的交点为A,写出过点A且垂直于极轴的直线的极坐标方程。
已知抛物线的方程为,直线l过定点,斜率为k.当k为何值时,直线l与该抛物线:只有一个公共点;有两个公共点;没有公共点?
函数. (1)求函数的极值; (2)设函数,对,都有,求实数m的取值范围.
设命题:函数y=kx+1在R上是增函数,命题:曲线与x轴交于不同的两点,如果是假命题,是真命题,求k的取值范围.
已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.
已知函数(). (1)当时,求的图象在处的切线方程; (2)若函数在上有两个零点,求实数的取值范围; (3)若函数的图象与轴有两个不同的交点,且,求证:(其中是的导函数).