(本题13分)已知数列和满足:,, 其中为实数,为正整数.(Ⅰ)对任意实数,证明数列不是等比数列;(Ⅱ)试判断数列是否为等比数列,并证明你的结论;
已知数列的前n项和为,且=-n+20n,n∈N. (Ⅰ)求通项; (Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前n项和.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y=1交于P、Q两点,且 (Ⅰ)求∠PDQ的大小; (Ⅱ)求直线l的方程.
在△ABC中,角A,B,C所对的边分别为a,b,c且满足. (Ⅰ)求角C的大小; (Ⅱ)求的最大值,并求取得最大值时角A的大小.
某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.
已知向量a=(1,2),b=(-2,m),m∈R. (Ⅰ)若a∥b,求m的值; (Ⅱ)若a⊥b,求m的值.