南昌三中高三年级举行投篮比赛,比赛规则如下:每次投篮投中一次得分,未中扣分,每位同学原始积分均为分,当累积得分少于或等于分则停止投篮,否则继续,每位同学最多投篮次.且规定总共投中次的同学分别为一、二、三等奖,奖金分别为元、元、元.某班甲、乙、丙同学相约参加此活动,他们每次投篮命中的概率均为,且互不影响.(1)求甲同学能获奖的概率;(2)记甲、乙、丙三位同学获得奖金总数为,求的期望.
已知的面积满足,且.(Ⅰ)求角的取值范围;(Ⅱ)若函数,求的最大值.
已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:=3n2an+,an≠0,n≥2,n∈N*.(1)若数列{an}是等差数列,求a的值;(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.
(本题满分16分)设函数.(1)若=1时,函数取最小值,求实数的值;(2)若函数在定义域上是单调函数,求实数的取值范围;(3)若,证明对任意正整数,不等式都成立.
(本小题满分16分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值.(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.(ⅰ)若k=1,求△OAB面积的最大值;(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.