已知ABCD四点的坐标分别为 A(1,0), B(4,3),C(2,4),D(0,2)⑴证明四边形ABCD是梯形;⑵求COS∠DAB。⑶设实数t满足(-t)·=0,求t的值。
已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列. (Ⅰ)求椭圆C的方程. (Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
已知函数,其中,. (Ⅰ)当时,且为奇函数,求的表达式; (Ⅱ)当时,且在上单调递减,求的值.
如图,正方形与等边三角形所在的平面互相垂直,分别是的中点. (Ⅰ)证明:∥平面; (Ⅱ)求二面角的正切值.
已知函数在区间上的最大值为. (Ⅰ)求常数的值; (Ⅱ)在中,角所对的边长分别为,若,,面积为,求边长的值.
(本小题12分)已知函数 (1)求函数f(x)的单调区间; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的,函数在区间(t,3)上总不是单调函数,求m的取值范围; (3)求证:().