. 已知,,动点满足.(1)求动点的轨迹方程.(2)设动点的轨迹方程与直线交于两点,为坐标原点求证:
如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.(1)求证:平面(2)求四棱锥的体积.
如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.(1)求证:EF//平面ABC;(2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.
如图1,在直角梯形中,,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点.(1)求证:平面平面;(2)求证:平面;(3)若,求四棱锥的体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.(1)求证:OD//平面VBC;(2)求证:AC⊥平面VOD;(3)求棱锥的体积.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证: EC⊥CD ;(2)求证:AG∥平面BDE;(3)求:几何体EG-ABCD的体积.