(A、B选做一题,若两题都做,以A题计分,本题满分14分)A.已知向量,,,函数(1)求函数的最大值与最小正周期;(2)求使不等式成立的的取值集合.(3)若将向左平移个单位,再把图象所有点的横坐标缩短到原来的倍得到,关于的方程在有且仅有一个解,求的取值范围。
已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.
设函数.(1)当时,求函数的极大值;(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;(3)设,当时,求函数的单调减区间.
如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点均匀地固定在半径为的圆上(圆在地面上),三点相异且共线,与地面垂直. 现要求点到地面的距离恰为,记用料总长为,设.(1)试将表示为的函数,并注明定义域;(2)当的正弦值是多少时,用料最省?
设函数.(1)用反证法证明:函数不可能为偶函数;(2)求证:函数在上单调递减的充要条件是.