某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西且与该港口相距海里的处,并正以海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(3)是否存在,使得小艇以海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定的取值范围;若不存在,请说明理由。
已知x是实数,y是纯虚数,且满足,求x与y.
已知关于t的一元二次方程(1)当方程有实根时,求点的轨迹方程.(2)求方程的实根的取值范围.
设(),,当取何值时,(1);(2)
实数分别取什么值时,复数是(1)实数(2)虚数(3)纯虚数。
已知关于的方程有实根,求实数的取值。