(本题满分12分)已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为。(I)求椭圆的方程;(Ⅱ)过点(1,0)作直线交于、两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由。
(本小题满分14分)已知函数,,为常数. (1)求函数的定义域; (2)若时,对于,比较与的大小; (3)讨论方程解的个数.
给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为. (1)求椭圆的方程及其“伴随圆”方程; (2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的伴随圆相交于M、N两 点,求弦MN的长; (3)点是椭圆的伴随圆上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.
如图,α⊥β,α∩β=l, A∈α, B∈β,点A在直线l上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求: (Ⅰ) 直线AB分别与平面α,β所成角的大小; (Ⅱ)二面角A1-AB-B1的余弦值.
(本小题满分12分)甲有一个装有个红球、个黑球的箱子,乙有一个装有个红球、个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜(,,,). (Ⅰ)当,时,求甲获胜的概率; (Ⅱ)当,时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的,值; (Ⅲ)当时,这个游戏规则公平吗?请说明理由.
(本小题满分12分) 已知向量,,. (1)若求向量,的夹角; (2)当时,求函数的最大值。