.椭圆>>与直线交于、两点,且,其中为坐标原点。1)求的值;2)若椭圆的离心率满足,求椭圆长轴的取值范围。
四边形ABCD中, BD是它的一条对角线,且,,.⑴若△BCD是直角三形,求的值;⑵在⑴的条件下,求.
(本大题12分,)如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点。(1)求证:平面;(2)求二面角的大小;(3)求直线与平面所成的角的正弦值.
(本小题满分12分)设函数,其中,,x∈R.(I)求的值及函数的最大值; (II)求函数的单调递增区间.
(本小题满分12分) 古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:(1) 写出a1,a2,a3,并求出an;(2) 记,求和();(其中表示所有的积的和)(3)证明:
(本小题满分12分)在平面直角坐标系中,线段AB与y轴交于点,直线AB的斜率为k,且满足(1)证明:对任意的实数,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程;(2)对(1)中的抛物线C,若直线与其交于M、N两点,求∠MON的取值范围.