(本大题9分)求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;(4)经过点N(-1,3)且在轴的截距与它在y轴上的截距的和为零.
(本题共13分,第Ⅰ问6分,第Ⅱ问7分)在中,角、、所对的边分别为、、,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.
(本题共13分,第Ⅰ问6分,第Ⅱ问7分)现有道题,其中道甲类题,道乙类题,张同学从中任取道题解答.(Ⅰ)求张同学至少取到道乙类题的概率;(Ⅱ)已知所取的道题中有2道甲类题,道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
(本题共13分,第Ⅰ问6分,第Ⅱ问7分)已知函数.(Ⅰ)求的最小正周期; (Ⅱ)求的单调递增区间,并求出在上的最大值与最小值.
(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)已知椭圆的中心为坐标原点,焦点在轴上,离心率,过椭圆右焦点且垂直于轴的一条直线交椭圆于两点,.(Ⅰ)求椭圆的方程;(Ⅱ)已知两点,设是椭圆上的三点,满足,点为线段的中点,求的值.
(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. (为自然对数的底数,是一个常数.)(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).