(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示。(1)根据茎叶图判断哪个班的平均身高较高;(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为, 且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为. (1)求的值, (2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).
已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且. (1)求角A的大小, (2)若,求△ABC的面积.
已知数列中,,前和 (Ⅰ)求证:数列是等差数列;(Ⅱ)求数列的通项公式; (Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
设二次函数在区间上的最大值、最小值分别是,集合. (Ⅰ)若,且,求的值; (Ⅱ)若,且,记,求的最小值.
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。 (1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围; (2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.