(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示。(1)根据茎叶图判断哪个班的平均身高较高;(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。 (Ⅰ)求的概率; (Ⅱ)设,求的分布列和均值(数学期望)。
设函数 f x = 2 2 cos 2 x + π 4 + s in 2 x
(I)求函数 f x 的最小正周期; (II)设函数 g x 对任意 x ∈ R ,有 g x + π 2 = g x ,且当 x ∈ 0 , π 2 时, g x = 1 2 - f x ,求函数 g x 在 - π , 0 上的解析式。
函数(1)如果函数单调减区调为,求函数解析式;(2)在(1)的条件下,求函数图象过点的切线方程;(3)若,使关于的不等式成立,求实数取值范围.
已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.(1)求椭圆标准方程;(2)设点,且,求直线方程.
函数(1)时,求最小值;(2)若在是单调增函数,求取值范围.