设函数.(Ⅰ)求函数的单调区间;(Ⅱ)设是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)当时.证明:.
已知椭圆:的离心率,是椭圆上两点,是线段的中点,线段的垂直平分线与椭圆相交于两点.(1)求直线的方程;(2)是否存在这样的椭圆,使得以为直径的圆过原点?若存在,求出该椭圆方程;若不存在,请说明理由.
如图,在四棱锥中, ,,,平面平面,是线段上一点,,,.(1)证明:平面;(2)设三棱锥与四棱锥的体积分别为与,求的值.
有甲、乙两个学习小组,每个小组各有四名学生,在一次数学考试中,成绩情况如下表:
(1)用茎叶图表示两组的成绩情况;(2)分别从甲、乙两组中随机选取一名学生的成绩,求选取的这两名学生中,至少有一名学生的成绩在90以上的概率.
已知数列的前项和为,且满足:,.(1)求数列的通项公式;(2)设,求数列的前项和为.
已知向量,函数 .(1)若,求的值;(2)求函数的对称中心和最大值,并求取得最大值时的的集合.