(本小题满分14分)在棱长为2的正方体ABCD—A1B1C1D1中,E,F分别为A1D1和CC1的中点.(Ⅰ)求证:EF//平面ACD1;(Ⅱ)求异面直线EF与AB所成的角的余弦值;(Ⅲ)在棱BB1上是否存在一点P,使得二面角P—AC—B的大小为30°?若存在,求出BP的长;若不存在,请说明理由.
甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢. (Ⅰ)求两个骰子向上点数之和为8的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由
如图5,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D. (Ⅰ)求证:P、C、D、Q四点共面; (Ⅱ)求证:QD⊥AB.
甲、乙两人同时生产一种产品,6天中,完成的产量茎叶图(茎表示十位,叶表示个位)如图所示: (Ⅰ)写出甲、乙的众数和中位数; (Ⅱ)计算甲、乙的平均数和方差,依此判断谁更优秀?
已知定点,动点是圆(为圆心)上一点,线段的垂直平分线交于点. (I)求动点的轨迹方程; (II)是否存在过点的直线交点的轨迹于点,且满足(为原点).若存在,求直线的方程;若不存在,请说明理由.
已知双曲线与椭圆有共同的焦点,点在双曲线上. (I)求双曲线的方程; (II)以为中点作双曲线的一条弦,求弦所在直线的方程.