已知反比例函数y=(m为常数)的图象经过点A(-1,6). (1)求m的值; (2)如图9,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ⊙ O 与 BC , AC 分别相切于点 E , F , BO 平分 ∠ ABC ,连接 OA .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 BE = AC = 3 , ⊙ O 的半径是1,求图中阴影部分的面积.
如图,反比例函数 y = k x 的图象与一次函数 y = mx + n 的图象相交于 A ( a , - 1 ) , B ( - 1 , 3 ) 两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线 AB 交 y 轴于点 C ,点 N ( t , 0 ) 是 x 轴正半轴上的一个动点,过点 N 作 NM ⊥ x 轴交反比例函数 y = k x 的图象于点 M ,连接 CN , OM .若 S 四边形 COMN > 3 ,求 t 的取值范围.
2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.
(1)黄冈在第一轮抽到语文学科的概率是 ;
(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.
如图,在 ΔABC 和 ΔDEC 中, ∠ A = ∠ D , ∠ BCE = ∠ ACD .
(1)求证: ΔABC ∽ ΔDEC ;
(2)若 S ΔABC : S ΔDEC = 4 : 9 , BC = 6 ,求 EC 的长.
计算: | 1 - 3 | - 2 sin 60 ° + ( π - 1 ) 0 .