(本小题满分12分)某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人.(Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率;(Ⅱ)设这2人中享受折扣优惠的人数为,求的分布列和数学期望.
某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响.(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;(Ⅱ)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;(Ⅲ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.
某工厂在试验阶段大量生产一种零件.这种零件有A、B两项技术指标需要检测,设各项技术指标达标与否互不影响。若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(Ⅰ)求一个零件经过检测为合格品的概率是多少?(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少? (Ⅲ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=.(Ⅰ)求文娱队的人数;(Ⅱ)写出ξ的概率分布列并计算Eξ.
将两颗骰子先后各抛一次,a,b表示抛甲、乙两颗骰子所得的点数.(Ⅰ)若点(a,b)落在不等式组表示的平面区域内的事件记为A,求事件A的概率;(Ⅱ)若点(a,b)落在直线x+y=m上,且使此事件的概率最大,求m的值.
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(Ⅰ)求实数a,b间满足的等量关系;(Ⅱ)求线段PQ长的最小值;(Ⅲ)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.