.已知中心在原点,焦点在轴上,离心率为的椭圆过点(,)(1) 求椭圆方程;(2) 设不过原点O的直线,与该椭圆交于P、Q两点,直线OP、PQ、OQ的斜率依次为、、,满足、、依次成等差数列,求△OPQ面积的取值范围.
(本小题满分12分)设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),,动点M(x,y)的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状;(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程。
(本小题满分12分)如图,在四棱锥中,,平面,平面,,,.(1)求棱锥的体积;(2)求证:平面平面;(3)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.
(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金。在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示。(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率。(参考公式:其中)
(本小题满分12分)设为数列{}的前项和,已知,2,N(1)求,,并求数列{}的通项公式;(2)求数列{}的前项和。
选修4-5:不等式选讲已知函数(1)若的解集为,求实数的值;(2)当且时,解关于的不等式