.(本小题满分12分)有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。(1)求①号面需要更换的概率;(2)求6个面中恰好有2个面需要更换的概率;(3)写出的分布列,求的数学期望。
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数; (2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
判断下列函数的奇偶性. (1)f(x)=; (2)f(x)=log2(x+) (x∈R); (3)f(x)=lg|x-2|.
已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)="-" . (1)判断并证明f(x)在R上的单调性; (2)求f(x)在[-3,3]上的最值.
已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0. (1)求证:f(x)在(-∞,+∞)上为增函数; (2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.