.(本小题满分12分)有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。(1)求①号面需要更换的概率;(2)求6个面中恰好有2个面需要更换的概率;(3)写出的分布列,求的数学期望。
(12分)在△ABC中,|AB|=|AC|,∠A=120°,A(0,2),BC所在直线方程为x-y-1=0,求边AB、AC所在直线方程.
直角三角形的顶点坐标,直角顶点,顶点在轴的正半轴上,点为线段的中点 (1)求边所在直线方程。(2)M为直角三角形外接圆的圆心,求圆M的方程。 (3)若动圆N过点且与圆M内切,求动圆的圆心的轨迹方程。
已知,:,:. ⑴若是的充分条件,求实数的取值范围; ⑵若,“或”为真命题,“且”为假命题,求实数的取值范围.
已知直线相交于两点,且(其中O为坐标原点). (1)若椭圆的离心率为,求椭圆的标准方程;(2)求证:不论如何变化,椭圆恒过第一象限内的一个定点,并求点的坐标;(3)若椭圆的离心率,求椭圆长轴长的取值范围.
如图,在四棱锥中,侧面 是正三角形,且与底面垂直,底面是边长为2的菱形,,是中点,过、、三点的平面交于. (1)求证:; (2)求证:是中点;(3)求证:平面⊥平面.