据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
(本小题共13分)若有穷数列{an}满足:(1)首项a1=1,末项am=k,(2)an+1= an+1或an+1="2an" ,(n=1,2,…,m-1),则称数列{an}为k的m阶数列.(Ⅰ)请写出一个10的6阶数列;(Ⅱ)设数列{bn}是各项为自然数的递增数列,若,且,求m的最小值.(考生务必将答案答在答题卡上,在试卷上作答无效)
(本小题共14分)设函数在处取得极值.(Ⅰ)求与满足的关系式;(Ⅱ)若,求函数的单调区间;(Ⅲ)若,函数,若存在,,使得成立,求的取值范围.
.(本小题共13分)在平面直角坐标系xOy中,为坐标原点,动点与两个定点,的距离之比为.(Ⅰ)求动点的轨迹的方程;(Ⅱ)若直线:与曲线交于,两点,在曲线上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题共13分)某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的.(Ⅰ)求甲、乙两人都选择A社区医院的概率;(Ⅱ)求甲、乙两人不选择同一家社区医院的概率;(Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.(Ⅰ)求证:BC⊥AM;(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;(Ⅲ)若,求二面角A-MB1-C的大小.