(本小题满分14分)设数列为等比数列,数列满足,,已知,,其中.(Ⅰ) 求数列的首项和公比;(Ⅱ)当m=1时,求;(Ⅲ)设为数列的前项和,若对于任意的正整数,都有,求实数的取值范围.
已知,求(1)的值。(2)的值。(3)的值。
已知函数,(1)求函数的单调区间;(2)当时,函数恒成立,求实数的取值范围;(3)设正实数满足.求证:.
如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。
数列{}的前n项和为,,.(1)设,证明:数列是等比数列;(2)求数列的前项和;(3)若,.求不超过的最大整数的值。
在如图所示的几何体中,是边长为2的正三角形,平面ABC,平面平面ABC,BD=CD,且.(1)若AE=2,求证:AC∥平面BDE;(2)若二面角A—DE—B为60°.求AE的长。