(本小题满分13分)已知抛物线经过点A(2,1),过A作倾斜角互补的两条不同直线.(1) 求抛物线W的方程及准线方程;(2) 当直线与抛物线W相切时,求直线的方程;(3) 设直线分别交抛物线W于B、C两点(均不与4重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
已知正数满足, (1) 求证:; (2) 求的最小值.
已知直线经过点,倾斜角, (1)写出直线的参数方程; (2)设与圆相交于A、B两点,求点P到A、B两点的距离之积.
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为。 (1)写出函数的解析式,并求出函数的定义域; (2)求当为多少时,容器的容积最大?并求出最大容积.
已知实数满足,求证中至少有一个是负数.
已知若求实数的值.