(本小题满分12分)已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C:(p>0)的顶点关于直线l的对称点在该抛物的准线上.(Ⅰ)求抛物线C的方程;(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若 (O为原点,A、B异于原点),试求点N的轨迹方程.
(本小题满分13分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m≠0),L交椭圆于A、B两个不同点。 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与x轴始终围成一个等腰三角形。
已知数列()与{)有如下关系: (1)求数列(}的通项公式。 (2)设是数列{}的前n项和,当n≥2时,求证:
(本小题满分13分)已知函数上恒成立. (1)求的值; (2)若 (3)是否存在实数m,使函数上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.
(本小题满分13分)设三次函数,在处取得极值,其图像在处的切线的斜率为。 (1)求证:; (2)若函数在区间上单调递增,求的取值范围。
本小题满分13分) 已知函数 (1)为定义域上的单调函数,求实数的取值范围 (2)当时,求函数的最大值 (3)当时,且,证明: