设函数, (Ⅰ)求的单调区间;(Ⅱ)若方程在上有两个实数解,求实数t的取值范围;(Ⅲ)是否存在实数,使曲线与曲线及直线所围图形的面积为,若存在,求出一个的值,若不存在说明理由.
已知 (1)求sinθcosθ的值. (2)求sin3θ﹣cos3θ的值. (3)当﹣π<θ<0时,求tanθ的值.
已知集合,集合B={x||x﹣m|≤2},若A∩B≠∅,求m的取值范围.
设函数, (1)求f(x)的周期; (2)当x∈[﹣π,π]时,求f(x)单调递增区间; (3)当x∈[0,2π]时,求f(x)的最大值和最小值.
已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为. (Ⅰ)+y2=1; (Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:为定值.
已知△ABC中,角A,B,C所对的边分别是a,b,c,且2(a2+b2﹣c2)=3ab; (1)求; (2)若c=2,求△ABC面积的最大值.