设函数, (Ⅰ)求的单调区间;(Ⅱ)若方程在上有两个实数解,求实数t的取值范围;(Ⅲ)是否存在实数,使曲线与曲线及直线所围图形的面积为,若存在,求出一个的值,若不存在说明理由.
已知函数.(1)用分段函数的形式表示该函数;(2)在右边所给的坐标系中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).
设全集为实数集R,,,. (1)求及; (2)如果,求a的取值范围.
计算:⑴ (2)
已知是定义在上的奇函数,当时,。(1)求函数的解析式;(2)画出函数的图象,并求函数的单调区间;(3)当为何值时,方程有三个解?
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示)(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润为S元,①求S关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.(提示:毛利润=销售总价-成本总价)