如图,在棱长为2的正方体中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).
(本题满分12分)已知椭圆为常数,且,过点且以向量为方向向量的直线与椭圆交于点,直线交椭圆于点 (为坐标原点).(1)的面积的表达式;(2)若,求的最大值.
(本题满分12分)如图,四棱锥P—ABCD中,PA⊥ABCD,四边形ABCD 是矩形. E、F分别是AB、PD的中点.若PA=AD=3,CD=. (1)求证:AF//平面PCE; (2)求点A到平面PCE的距离;(3)求直线FC与平面PCE所成角的大小。
有混在一起质地均匀且粗细相同的长分别为1、2、3的钢管各3根(每根钢管附有不同的编号),现随意抽取4根(假设各钢管被抽取的可能性是均等的),再将抽取的4根首尾相接焊成笔直的一根.(1)若用ξ表示新焊成的钢管的长度(焊接误差不计),试求随机变量的分布列及;(2)设的取值从小到大依次为数列是首项为1,公差为的等差数列,设,当时,求的值。
(本题满分12分)在△ABC中,三个内角是A,B,C的对边分别是a,b,c,其中c=10,且 (1)求证:; (2)设圆O过A,B,C三点,点P位于劣弧上,∠PAB=60°,求四边形ABCP的面积。
文(本小题满分12分)已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图. (I)若△POM的面积为,求向量与的夹角。 (II)试证明直线PQ恒过一个定点。