(本小题满分14分)已知函数满足,对于任意R都有,且,令.(1)求函数的表达式;(2)求函数的单调区间;(3)研究函数在区间上的零点个数.
某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设.(1)将五边形的面积表示为的函数;(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
已知,函数.⑴若不等式对任意恒成立,求实数的最值范围;⑵若,且函数的定义域和值域均为,求实数的值.
在数列中,,.(1)设.证明:数列是等差数列;(2)求数列的前项和.
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面;(2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且.(1)求角的值; (2)若角,边上的中线=,求的面积.